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Mathematical Link Models

« Government will provide mathematical
models for

— Uplink (slant) paths

— Downlink (slant) paths
— Horizontal paths

 Models can be useful tool for system
design
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Optical Atmospheric Propagation Effects

« Absorption & Scattering
(extinction)
— Attenuation of optical wawe
— Reduces received power

— Limits optical channel availability in
the presence of fog or clouds

+ Fluctuations in Index of Refraction
— Small temperature fluctuations cause
refractive-1ndex fluctuations known as

optical furbulence

— Cause intensity and phase
fluctuations on propagating beam

+ Atmospheric Links
— BExtended path turbulence between
Transmitter and Receiver (Tx & Rx)
Upliﬂlﬂ-’dDWﬂliﬂHthfr‘Dm alrcraft
= Ajrcraft to aircraft
— Aero-optic effect around aircraft,
especially with external dome

Wodeled as thin turbulent layer
(phase screen) near TeRx
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Optical Atmospheric Propagation Effects

« Absorption & Scattering
(extinction)
— Attenuation of optical wawe
— Reduces received power

— Limits optical channel availability in
the presence of fog or clouds

+ Fluctuations in Index of Refraction
— Small temperature fluctuations cause
refractive-1ndex fluctuations known as

optical furbulence

— Cause intensity and phase
fluctuations on propagating beam

+ Atmospheric Links
— BExtended path turbulence between
Transmitter and Recelver (Tx & Rx)
Upliﬂlﬂ-’dDWﬂliﬂHthfr‘Dm air
Alrcraft to aircraft
— Aero-optic effect around aircraft,
especially with external dome

- Modeled as thin turbiulent layer
(phase screen) near TeRx

« Propagation Effects on Beam

— Larger beam spot size at receiver
« Leads to additional power 1055 in
sigﬂal
— Beamwander
Caused tl‘_-,-“ turbulent eddies near Tx
«  Contributes to long-term spot size
= Can contribute to scintillation

— Scintillation {intensity fluctuations)
« Reduces signal-to-noise ratio (SME)
« Leads to signal fades

— Phase fluctuations

« Angle-of-arrival fluctuations [causes
biearn jitter on detector)

 Reduces spatial coherence of beam
(determines speckle size at Bx)

« Limits heterodyne efficiency in
coherent detection

« Limits "effective” REx aperture size for
improved SMNRE to size of

fo = Fried's parameter
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Mitigation of Atmospheric Effects on
Optical Communication Link

Transmitter System
Architecture
— Increase transmiffed power
Improve SkE at Bx

— Mulfinle beams

Sufficiently separated to ensure
statistical independence at Rx

Produces aperure averaging of
scintillation [similar to receiver
array)

— Muifi-mode beams
— FPatlially coherent beams

—  Multinle freguency regimes
RF and optical
—  Adaptive oplics

Corrects phase distortions caused
by optical turbulence
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Mitigation of Atmospheric Effects on
Optical Communication Link

« Transmitter System
Architecture
— Increase transmiffed power
« Improve SKE at Bx

— Mulfinle beams

- Sufficiently separated to ensure
statistical independence at Rx

« Produces aperure averaging of
scintillation [similar to receiver
array)

— Muifi-mode beams
—  FPatially coherent beams

—  Multinle freguency regimes
« RF and optical
— Adaptive oplics

« Corrects phase distortions caused
by optical turbulence

+ Receiver System Architecture
— Incoherent (direct) detection

intensity modulation

« large aperture receiver [improve
reliability’)

« array receivers (improve reliability
— Coherent (heteradyvne) detection
« intensity and phase modulation
IEH'QE EDEFDJFE FECEMNEN
= drray FECENENS

Intensity cross-section of beam after propagating thru extendead
turbulence. CDak patches denote asignal fade and yellow circlels)
depict() alarge Rx aperture or (&) an array of small Bx aperures.

(8]

Approwvedfor Public Relesse, Distribation Unlimited Case 9830 2 Jul OF




Intensity Fluctuations

Scintillation Index
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Mathematical Formulas

Propagation Paths

s Uplink fslant) path from ground to aircraft
e Downlink (slant) path fram aircraft to ground

» Horlzontal path between two aircraft
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Atmospheric Models

Kolmogorov Spectrum:
D, (k) =0.033C2 ()7

HUfﬁEg|E-VE"E‘j’ (HV):
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where

+ fi= gltitude

«w= upper atmosphenc pseudo-wind speed (= 21 mis for HY. )

+ 4= C2nearground level (= 1.7 @ 10 me?® for
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CONCLUDING REMARKS

+ Scintillation index (variance/mean‘) may be worse at weaker C,°
« Aperture averaging can reduce signal fluctuations

« Speckle size at long ranges through weak C,° values may be too
large for single aperture averaging

« Array of small receivers (properly separated) can reduce
scintillation index more than single large aperture

* Multiple beams can reduce scintillation like an array of receivers

= $=—
frb:g:lcia
i nstuce

Linilveersioy of
Central
Florida

Approwvedfor Public Relesse, Distribation Unlimited Case 9830 2 Jul OF




	Coherent Detection

